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Content warning: eating disorders



Instagram

johnappleseed @ lennp liked your photo
3260 followers 360 following N 3 minutes

Edit Profile @ skrug liked your photo

5 minutes ago

@ joyvincent started following you
/ minutes ago

miekd left a comment on your photo:
“Whoa, that's a great location. Now |
know where I'll record my next video.”

23 minutes ago

John Here's to the crazy ones

chrisconnolly liked your photo
25 minutes ago

) cweeldreyer liked your photo
29 minutes ago

5= iansilber left a comment on your
photo: “Really love this side of San
Francisco. Absolutely beautiful!”

30 minutes agc

SE T

http://aworldofapps.com/wp-content/uploads/2015/07/Profile-how-to-use-Instagram.jpg



Pro-ED Instagram

Community that “share[s] content, advice and provide|s]
social support for disordered or unusual eating choices”

(Chancellor et al. 2015)



Pro-ED Instagram

Qv A

® 17 |ikes

Todays total ¢ 906 calories &3 today
was horrible & €3 #Ana #anorexia #staystrong #fat
#ugly #disgusting #nothappy #sad #istrong ed
#eatingdisorder #girl #cutting #losingweight
H#weight #wishweight #clean #horribleday #horrible
#selfharm

I -

KEEP
CALM

AND DO SOME

FUCKING
CARDIO

Qv A

¥ 6 likes

an rinht

Qv

® 22 [ikes

#ana #imia #ed #bones
#bonsepo #fitspo Hthygap #thynsperation

Feeling a little better,.if { want to
reach my goal i have to be patient and work harder, I
hope you are doing the same 2) #cardio #excercise
#loseweight #workout #skinny #thin #thighggap
ticollarbones

#thighgap

Qv A

® 11 [ikes

#dinner today was some whole grain
spelt bread with sunflower seeds (yummy) topped
with humous, tomatoes, dried tomato spread and
some cucumber.., I also had some leftover
saverkraut @ #ed #anorexia #bulimia #vegan
#dinner #veganrecovery #thisorhospital #edfamily
#anawho #2fab4ana firecover #edfighter
#edwarriors #edwarrior #edsoldier #edfree
#eatingdisorderrecovery



Pro-ED Instagram

B -c2ling a little better..if | want to

reach my goal | have to be patient and work harder, I

hope you are doing the same ¢) #cardio Hexegecise
floseweight #workout #skinny #thirflHthighggap

H#collarbones

T -



Pro-ED Instagram

B -c2ling a little better..if | want to

reach my goal | have to be patient and work harder, I

hope you are doing the same ¢) #cardio Hexegecise
floseweight #workout #skinny #thirflHthighggap

#collarbones

B ok ﬁ
thighgap

(space between thighs)



Orthographic variation

e “Represent spoken and vernacular forms, simulate prosody or
shorten the message” (Androutsopoulos 2011)
e Tied to social differentiation, identity marking (Sebba 2009)

Community may only allow certain variants (Herring 2012)

Phonetic <just> — <jus>

Typographic <leet speak> — <1337 5934K>

Syllabograms <before> — <b4>



Dynamics of variation

e Writing conventions evolve over time (Sebba 2009)
e Communities are dynamic

o Language change mirrors social dynamics (Danescu-Nicelscu-Mizil et al.
2013)
o Locally-defined social categories: newcomers vs. regulars
e Changing practices of pro-ED community

o Community of practice: “aggregate of people who come together around
mutual engagement in an endeavor” (Eckert & McConnell-Ginet 1992)



Community change: hashtag ban

SOCIETY

Instagram Bans Thinspo Content

Instagram is the latest social media platform to ban thinspiration content. But are these policies
effective?

By Heba Hasan @Heba__H | April 26, 2012

[ o NSO i <. EERRC I Tr

Thinspo content will no longer be welcome on
Instagram. Following in the footsteps of Pinterest
and Tumblr, Instagram is the latest social media site
to ban “thinspiration” photos — images that are
meant to provide motivation for those who want to
lose weight and which health experts say often
contribute to eating disorders.

Instagram’s new policy doesn’t come as a surprise.
The app came under scrutiny last week when
celebrity and Instagram user Alexa Chung posted a

photo of herself and was attacked by users for being Michaela Begsteiger/Getty
too skinny. Instagram bans thinspo content

newsfeed.time.com/2012/04/26/instagram-bans-thinspo-content



Ban effect

< vV <& (Hthyghgop Y

Top Posts

No photos or videos yet!



Ban response
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Ban response
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Research questions

RQ1: Which community members adopt more variants?



Example variants

thighgap



Example variants

thyghgap  thyghgapp  thyygap thyygapp
thighgap thghgap thiigap thighgaappp thygaps

thightgap  thightgrap thightpag thygsp



Example variants
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Depth



Example variants

thyghgap ~ ¢hyghgapp)  thyygap thyygapp
thighgap (‘thghgap thiigap thighgaappp thygaps
thightgap  thightgrap thightpag

Depth



Incrementation of variation

e Orthographic variation as continuum
e Similar to phonetic incrementation

o “Successive cohorts and generations of children advance a change beyond the
level of their caretakers and role models” (Labov 2001)

e Do community members adopt deeper variants differently
than shallow ones?



Research questions
RQ1: Which community members adopt more variants?

RQ2: Does a variant’s depth influence its likelihood of adoption

by these community members?



Methods

Data collection
Compute orthographic depth (language variables)
Compute membership attributes (community variables)

Building regression models
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Data collection (Chancellor et al. 2015)

e (ollected in November 2014
o Ban in April 2012

e 2.4 million posts
o January 2011 to November 2014



Data collection (Chancellor et al. 2015)
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Identify pro-ED seed terms
(not banned), mine
Instagram

anorexia, ed, bulimia
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Identify pro-ED seed terms
(not banned), mine
Instagram

anorexia, ed, bulimia

@

Filter for pro-ED content,
identify top 200 hashtags
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source hashtags
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Data collection (Chancellor et al. 2015)

Identify pro-ED seed terms
(not banned), mine
Instagram

anorexia, ed, bulimia

Extract 673 variants with
regular expressions

th*nspo* => thynspoo

@

Filter for pro-ED content,
identify top 200 hashtags

i

Manually identify 17 banned
source hashtags

ana, thighgap, thinspo




Data collection (Chancellor et al. 2015)

Identify pro-ED seed terms
(not banned), mine
Instagram

anorexia, ed, bulimia

Extract 673 variants with
regular expressions

th*nspo* => thynspoo

@

Filter for pro-ED content,
identify top 200 hashtags

i

Manually identify 17 banned
source hashtags

2.4 million posts
176,000 users
51% variant posts
673 variants

17 sources

ana, thighgap, thinspo




Methods

Data collection
Compute orthographic depth (language variables)

Compute membership attributes (community variables)

Building regression models



Compute depth: edit distance

e Operations needed to transform source — variant hashtag
o Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)

thighgap| >thyygapp
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Compute depth: edit distance

e Operations needed to transform source — variant hashtag
o Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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Compute depth: edit distance

e Operations needed to transform source — variant hashtag
o Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)

thighgap| >thyygapp

1 2 3
thighgap [> thyghgap E>thyyhgap [>thyylgap



Compute depth: edit distance

e Operations needed to transform source — variant hashtag
o Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)

thighgap| >thyygapp

1 2 3 4
thighgap > thyghgap_>thyyhgap >thyyllgap C>thyygapp



Compute depth: edit distance

e Operations needed to transform source — variant hashtag
o Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)

4
thighgap| >thyygapp

1 2 3 4
thighgap > thyghgap_>thyyhgap >thyyllgap C>thyygapp




Edit distance: Distribution of variants

Edit distance Variants Top 3 variants

1 253 anarexia, bulimic, eatingdisorders

2 221 anarexyia, thinspooo, thynspoo

3 108 secretsocietyl23, thinspoooo, thygap

4 50 secret_societyl23, secretsociety_123, thinspooooo



Edit distance: Adoption over time

Edit distance frequencies

o
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Post frequency
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Language variables

® per post:



Language variables

® per post:

¥ 16 likes

B © ish T had legs like these..

#pastel #legs #thyghgap #thynsperation #pink
#goals #tummy #thynspoo




Language variables

® per post:

TAGS, VARIANT, MAX_EDIT, DIST_1, DIST_4
QY M
¥ 16 likes

TAGS=3 B : ish I hod legs like theseo.
VARIANT=1 °

MAX_EDIT=2

DIST_1=1

DIST 4=O < o#pastel #legs #thyghgap #ithynsperation #pink

#goals #tummy #thynspoo



Methods

Data collection

Compute orthographic depth (language variables)
Compute membership attributes (community variables)
Building regression models



Community data: membership attributes

Locally-defined variables (within pro-ED community):

o relative age
o lifespan



Community data: membership attributes

® per post:
o SINCE_START, TILL_END

® per user:
o DATE_RANGE



Community data: membership attributes

® per post:
o SINCE_START, TILL_END

® per user:
o DATE_RANGE

DATE RANGE
< >
t.< P? < >t
° SINCE START " TILL END "



Community data: membership attributes

e newcomer = low SINCE_START (< 10 weeks)
e committed user = high DATE_RANGE (> 10 weeks)

User A OoO——0O

User B O -O



Community data: membership attributes

e newcomer = low SINCE_START (< 10 weeks)
e committed user = high DATE_RANGE (> 10 weeks)

newcomer
User A O——O

newcomer regular

User B O -O




Community data: membership attributes

e newcomer = low SINCE_START (< 10 weeks)
e committed user = high DATE_RANGE (> 10 weeks)

User A OoO——0O

transient

User B O -O
committed



Recap: all variables

® per post:
o VARIANT, DIST_1, DIST_4, MAX_EDIT, TAGS, SINCE_START,
TILL_END, DATE
® Dper user:
o DATE_RANGE



Methods

Data collection
Compute orthographic depth (language variables)
Compute membership attributes (community variables)

Building regression models



Questions
RQ1: Which community members adopt variants?

RQ2: Does a variant’s depth influence its likelihood of
adoption by these community members?



Regression: predictors

Regression
Predicted

Predictors

RQ1
Logistic
VARIANT

SINCE_START
TILL_END
DATE_RANGE

RQ2
Logistic
DIST_1 DIST_4

SINCE_START
TILL_END
DATE_RANGE



Results



RQ1: Which community members adopt variants?



RQ1: Which community members adopt variants?

e Newcomers and committed (long-lifespan) users



RQ1: Which community members adopt variants?

0.56 P(variant) vs. member age

P(variant)

=5 0 5 10 15 20 :25 30 35 40
SINCE_START



RQ1: Which community members adopt variants?

e Regression results
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e Regression results

e Predicting
o SINCE_START negatively correlated (B =-0.00456, p < 0.001)
o TILL_END positively correlated ( = 0.00294, p < 0.001)
o DATE_RANGE positively correlated (B = 0.00294, p<0.001)



RQ1: Which community members adopt variants?

e Regression results

e Predicting

o SINCE_START negatively correlated (B =-0.00456, p < 0.001)
o TILL_END positively correlated ( = 0.00294, p < 0.001)
o DATE_RANGE positively correlated (B = 0.00294, p<0.001)

e Conclusion: variants adopted more often by newcomers and
committed members



RQ2: Does a variant’s depth influence its likelihood of
adoption?



RQ2: Does a variant’s depth influence its likelihood of

adoption?

e Deeper variants associated with newcomers and committed
members



RQ2: Does a variant’s depth influence its likelihood of
adoption?

Newcomers versus

P(edit dist)

Distribution of edit distances (week 1) Distribution of edit distances (week 10)
1-0 T 1 1 1 1 1-0 1 T 1 T 1 |
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I reqgulars (avg.=0.00) @ I regulars (avg.=0.27)

0.6 F = © 0.6 B
+

0.4 F . S 0.4 d
\Q)/ -

02 F {1 T o2k ] |

0.0 L 0.0k . l .

1| 2 El} lll- 5 1| 2 3 4 5
MAX_EDIT MAX_EDIT



RQ2: Does a variant’s depth influence its likelihood of
adoption?

Committed versus

Average edit distance over time

0 2.2 .
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RQ2: Does a variant’s depth influence its likelihood of
adoption?
e Regression results

e Predicting

o SINCE_START B =-0.00177, (p < 0.001)
o TILL_END B =0.00311 (p <0.001)

e Predicting

o SINCE_START B =-0.00450 (p < 0.001)
o TILL_END B =0.0133 (p <0.001)

e Conclusion: depth of variation correlates more strongly with
adoption by newcomers and committed members



Summary of findings

e Newcomers use more variants, deeper variation
o Supports prior findings (Danescu-Niculescu-Mizil et al. 2013)

e Committed members also use more/deeper variants
e Deeper variants — stronger effects
o Depth may influence orthographic perception in pro-ED community

e Additional: unclear social reception

o Mixed results (likes # comments)



Implications and future work

e Implications
o Online communities provide useful setting to study large-scale, long-term
language variation
o Orthographic variation as incrementation
o Sociotechnical effect on language variation

e Future work

o Different processes of orthographic variation:
deletion, lengthening, metathesis



References

Androutsopoulos, J. (2011). Language change and digital media: a review of conceptions and evidence. Standard Languages and Language
Standards in a Changing Europe, 145-159.

Chancellor, S, Pater, J. A, Clear, T., Gilbert, E., & De Choudhury, M. (2015). #thyghgapp : Instagram Content Moderation and Lexical
Variation in Pro-Eating Disorder Communities. 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing,
1201-1213.

Danescu-Niculescu-Mizil, C., West, R., Jurafsky, D., & Potts, C. (2013). No Country for Old Members: User Lifecycle and Linguistic Change in
Online Communities. Proceedings of the 22nd International Conference on World Wide Web, 307-317.

Eckert, P., & McConnell-Ginet, S. (1992). Think Practically and Look Locally: Language and Gender as Community-Based Practice. Annual
Review of Anthropology, 21(1992), 461-490.

Eisenstein, J. (2015). Systematic patterning in phonologically-motivated orthographic variation. Journal of Sociolinguistics, 19(2), 161-188.

Herring, S. C. (2012). Grammar and electronic communication. The Encyclopedia of Applied Linguistics, 1-9.

Labov, W. (2001). Principles of linguistic change, Volume 2: Social Factors. Blackwell Publishers.

Nerbonne, J., Heeringa, W. and Kleiweg, P. 1999. “Edit distance and dialect proximity”. In Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparison, 2nd edition, Edited by: Sankoff, D. and Kruskal, J. v—xv.

Sebba, M. (2009). Sociolinguistic approaches to writing systems research. Writing Systems Research, 1(1), 35—49.



Thank you!

Special thanks: Stevie Chancellor and Munmun De Choudhury
(Georgia Institute of Technology)

Questions?



