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Content warning: eating disorders
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Instagram
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Pro-ED Instagram
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● Community that “share[s] content, advice and provide[s] 
social support for disordered or unusual eating choices” 
(Chancellor et al. 2015)



Pro-ED Instagram
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Pro-ED Instagram
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Pro-ED Instagram
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thighgap
(space between thighs)



Orthographic variation
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Phonetic <just> → <jus>

Typographic <leet speak> → <1337 5934K>

Syllabograms <before> → <b4>

● “Represent spoken and vernacular forms, simulate prosody or 
shorten the message” (Androutsopoulos 2011)

● Tied to social differentiation, identity marking (Sebba 2009)
○ Community may only allow certain variants (Herring 2012)



● Writing conventions evolve over time (Sebba 2009)
● Communities are dynamic

○ Language change mirrors social dynamics (Danescu-Nicelscu-Mizil et al. 
2013)

○ Locally-defined social categories: newcomers vs. regulars

● Changing practices of pro-ED community
○ Community of practice: “aggregate of people who come together around 

mutual engagement in an endeavor” (Eckert & McConnell-Ginet 1992)

Dynamics of variation
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Community change: hashtag ban

10newsfeed.time.com/2012/04/26/instagram-bans-thinspo-content



Ban effect
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Ban response
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Ban response

13
http://www.socialmediaexaminer.com/wp-conten
t/uploads/2015/03/sd-pew-adult-user-stats.png



Research questions
RQ1: Which community members adopt more variants?
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Example variants

thighgap
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Example variants
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Example variants
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Example variants
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Depth



Incrementation of variation
● Orthographic variation as continuum
● Similar to phonetic incrementation

○ “Successive cohorts and generations of children advance a change beyond the 
level of their caretakers and role models” (Labov 2001)

● Do community members adopt deeper variants differently 
than shallow ones?
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Research questions
RQ1: Which community members adopt more variants?

RQ2: Does a variant’s depth influence its likelihood of adoption 
by these community members?
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Methods
● Data collection
● Compute orthographic depth (language variables)
● Compute membership attributes (community variables)
● Building regression models
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● Compute orthographic depth (language variables)
● Compute membership attributes (community variables)
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Data collection (Chancellor et al. 2015)
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● Collected in November 2014
○ Ban in April 2012

● 2.4 million posts
○ January 2011 to November 2014
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Data collection (Chancellor et al. 2015)
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Identify pro-ED seed terms 
(not banned), mine 
Instagram

anorexia, ed, bulimia

Data collection (Chancellor et al. 2015)
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Identify pro-ED seed terms 
(not banned), mine 
Instagram

anorexia, ed, bulimia

Data collection (Chancellor et al. 2015)

Filter for pro-ED content, 
identify top 200 hashtags
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Identify pro-ED seed terms 
(not banned), mine 
Instagram

Manually identify 17 banned 
source hashtags

anorexia, ed, bulimia

ana, thighgap, thinspo

Data collection (Chancellor et al. 2015)

Filter for pro-ED content, 
identify top 200 hashtags
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Identify pro-ED seed terms 
(not banned), mine 
Instagram

Extract 673 variants with 
regular expressions

Filter for pro-ED content, 
identify top 200 hashtags

Manually identify 17 banned 
source hashtags

anorexia, ed, bulimia

ana, thighgap, thinspo

th*nspo* => thynspoo

Data collection (Chancellor et al. 2015)



Final data
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Identify pro-ED seed terms 
(not banned), mine 
Instagram

Extract 673 variants with 
regular expressions

2.4 million posts
176,000 users
51% variant posts
673 variants
17 sourcesManually identify 17 banned 

source hashtags

anorexia, ed, bulimia

ana, thighgap, thinspo

th*nspo* => thynspoo

Data collection (Chancellor et al. 2015)

Filter for pro-ED content, 
identify top 200 hashtags



Methods
● Data collection
● Compute orthographic depth (language variables)
● Compute membership attributes (community variables)
● Building regression models
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Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap thyygapp



Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap

thighgap thyygapp



Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap thyghgap
1

thighgap thyygapp



Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap thyghgap thyyhgap
1 2

thighgap thyygapp



Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap thyghgap thyyhgap thyyhgap
1 2 3

thighgap thyygapp



Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap thyygappthyghgap thyyhgap thyyhgap
1 2 3 4

thighgap thyygapp



Compute depth: edit distance
● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap thyygappthyghgap thyyhgap thyyhgap
1 2 3 4

thighgap thyygapp
4



Edit distance: Distribution of variants
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Edit distance Variants Top 3 variants

1 253 anarexia, bulimic, eatingdisorders

2 221 anarexyia, thinspooo, thynspoo

3 108 secretsociety123, thinspoooo, thygap

4 50 secret_society123, secretsociety_123, thinspooooo



Edit distance: Adoption over time
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Language variables
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● per post: 
○ TAGS, VARIANT, MAX_EDIT, DIST_1, DIST_4



Language variables

41

● per post: 
○ TAGS, VARIANT, MAX_EDIT, DIST_1, DIST_4



Language variables
● per post: 

○ TAGS, VARIANT, MAX_EDIT, DIST_1, DIST_4
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TAGS=3
VARIANT=1
MAX_EDIT=2
DIST_1=1
DIST_4=0



Methods
● Data collection
● Compute orthographic depth (language variables)
● Compute membership attributes (community variables)
● Building regression models
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Community data: membership attributes
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● Locally-defined variables (within pro-ED community): 
○ relative age
○ lifespan



Community data: membership attributes
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● per post:
○ SINCE_START, TILL_END

● per user:
○ DATE_RANGE



Community data: membership attributes
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● per post:
○ SINCE_START, TILL_END

● per user:
○ DATE_RANGE



Community data: membership attributes

47

● newcomer = low SINCE_START (< 10 weeks)
● committed user = high DATE_RANGE (≥ 10 weeks)

User A

User B



Community data: membership attributes
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● newcomer = low SINCE_START (< 10 weeks)
● committed user = high DATE_RANGE (≥ 10 weeks)

newcomer

newcomer regular

User A

User B



Community data: membership attributes
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● newcomer = low SINCE_START (< 10 weeks)
● committed user = high DATE_RANGE (≥ 10 weeks)

committed

transient
User A

User B



Recap: all variables
● per post:

○ VARIANT, DIST_1, DIST_4, MAX_EDIT, TAGS, SINCE_START, 
TILL_END, DATE

● per user:
○ DATE_RANGE
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Methods
● Data collection
● Compute orthographic depth (language variables)
● Compute membership attributes (community variables)
● Building regression models
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Questions
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RQ1: Which community members adopt variants?

RQ2: Does a variant’s depth influence its likelihood of 
adoption by these community members?



Regression: predictors
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RQ1 RQ2

Regression Logistic Logistic

Predicted VARIANT DIST_1, DIST_4

Predictors SINCE_START
TILL_END
DATE_RANGE
DATE

SINCE_START
TILL_END
DATE_RANGE
DATE



Results
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RQ1: Which community members adopt variants?
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RQ1: Which community members adopt variants?
● Newcomers and committed (long-lifespan) users
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RQ1: Which community members adopt variants?



● Regression results
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RQ1: Which community members adopt variants?



● Regression results
● Predicting VARIANT

○ SINCE_START negatively correlated (β = -0.00456, p < 0.001)
○ TILL_END positively correlated (β = 0.00294, p < 0.001)
○ DATE_RANGE positively correlated (β = 0.00294, p<0.001)
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● Regression results
● Predicting VARIANT

○ SINCE_START negatively correlated (β = -0.00456, p < 0.001)
○ TILL_END positively correlated (β = 0.00294, p < 0.001)
○ DATE_RANGE positively correlated (β = 0.00294, p<0.001)

● Conclusion: variants adopted more often by newcomers and 
committed members
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RQ1: Which community members adopt variants?



RQ2: Does a variant’s depth influence its likelihood of 
adoption? 
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RQ2: Does a variant’s depth influence its likelihood of 
adoption? 
● Deeper variants associated with newcomers and committed 

members
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63

Newcomers versus regulars

RQ2: Does a variant’s depth influence its likelihood of 
adoption? 
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RQ2: Does a variant’s depth influence its likelihood of 
adoption? Committed versus transient



● Regression results
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RQ2: Does a variant’s depth influence its likelihood of 
adoption?



● Regression results
● Predicting DIST_1

○ SINCE_START β = -0.00177, (p < 0.001)
○ TILL_END β = 0.00311 (p < 0.001)
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RQ2: Does a variant’s depth influence its likelihood of 
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● Regression results
● Predicting DIST_1

○ SINCE_START β = -0.00177, (p < 0.001)
○ TILL_END β = 0.00311 (p < 0.001)

● Predicting DIST_4
○ SINCE_START β = -0.00450 (p < 0.001)
○ TILL_END β = 0.0133 (p < 0.001)
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● Regression results
● Predicting DIST_1

○ SINCE_START β = -0.00177, (p < 0.001)
○ TILL_END β = 0.00311 (p < 0.001)

● Predicting DIST_4
○ SINCE_START β = -0.00450 (p < 0.001)
○ TILL_END β = 0.0133 (p < 0.001)

● Conclusion: depth of variation correlates more strongly with 
adoption by newcomers and committed members
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RQ2: Does a variant’s depth influence its likelihood of 
adoption?



● Newcomers use more variants, deeper variation
○ Supports prior findings (Danescu-Niculescu-Mizil et al. 2013)

● Committed members also use more/deeper variants
● Deeper variants → stronger effects

○ Depth may influence orthographic perception in pro-ED community

● Additional: unclear social reception
○ Mixed results (likes ≠ comments)

Summary of findings
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Implications and future work
● Implications

○ Online communities provide useful setting to study large-scale, long-term 
language variation

○ Orthographic variation as incrementation
○ Sociotechnical effect on language variation

● Future work
○ Different processes of orthographic variation: 

deletion, lengthening, metathesis
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Thank you!
Special thanks: Stevie Chancellor and Munmun De Choudhury 
(Georgia Institute of Technology)

Questions?
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