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#anorexia, #anarexia, 

#anarexyia: Characterizing 

Online Community Practices 

with Orthographic Variation



● Online language is subject to profound variation and rapid 

change over time. (Androutsopoulos 2011)

● An individual’s adoption of language change in a particular 

online community is related to their community 

membership. (Sebba 2009)

Language variation online
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● Prior studies in online language have focused mainly on 

lexical change. (Danescu-Niculescu-Mizil et al. 2013)

● Change at the level of orthography is also important but less 

well understood. (Herring 2012)

Orthographic change
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anorexia anarexia anarexyia



RQ1: Who adopts new orthographic variants?

RQ2: Does a variant’s depth influence its likelihood of adoption 

by these community members?

RQ3: Does a variant’s depth influence its social reception?

Research questions

4



Warning: eating disorders
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Pro-ED Instagram
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● Community that “share[s] content, advice and provide[s] 

social support for disordered or unusual eating choices.” 

(Chancellor et al. 2016)

● Community of practice: “aggregate of people who come 

together around mutual engagement in an endeavor.” (Eckert 

& McConnell-Ginet 1992)



Content ban
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Pro-ED posts (Chancellor et al. 2016)
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April 2012Jan 2011 Nov 2014

2.4 million pro-ED posts

17 source hashtags

673 variant hashtags



Variants grow more frequent, “deeper”
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Who drives this change?

RQ1: Who adopts new orthographic variants?
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Differentiating community members
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● Membership attributes: 

○ Age

○ Lifespan



RQ1: Who adopts new orthographic variants?

● Newcomers and committed (long-lifespan) community 

members.

12



13

RQ1: Who adopts new orthographic variants?



● Regression results

○ Predicting appearance of any variant in a post.
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RQ1: Who adopts new orthographic variants?



● Regression results

○ Age: β = -0.00456***, effect size = -0.348

○ Lifespan: β = 0.00294***, effect size = 0.654
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RQ1: Who adopts new orthographic variants?

*** = p < 0.001
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RQ1: Who adopts new orthographic variants?

● Conclusion: variants adopted more often by newcomers and 

committed members.



RQ1: Which community members adopt more variants?

RQ2: Does a variant’s depth influence its likelihood of adoption 

by these community members?

RQ3: Does a variant’s depth influence the post’s social reception?

Research questions
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Compute depth: edit distance

● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap
thyygapp



Compute depth: edit distance

● Operations needed to transform source → variant hashtag

○ Used in dialectology (Nerbonne, Heeringa & Kleiweg 1999)
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thighgap

thyygapp

thyghgap
thyyhgap thyyhgap

1 2
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thighgap
thyygapp
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RQ2: Does a variant’s depth influence its likelihood of 
adoption? 
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RQ2: Does a variant’s depth influence its likelihood of 
adoption? 
● Deeper variants are adopted by newcomers and committed 

members.
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Newcomers > regulars

RQ2: Does a variant’s depth influence its likelihood of 
adoption? 
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RQ2: Does a variant’s depth influence its likelihood of 
adoption?

Committed > transient



● Regression

○ Predicting appearance of shallow (distance 1) and deep (distance 4) variant.
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RQ2: Does a variant’s depth influence its likelihood of 
adoption?
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● More extreme effects for deeper variants.

● Distance 1

○ Age: β = -0.00177***, effect size = -0.097

● Distance 4

○ Age: β = -0.00450***, effect size = -0.416

RQ2: Does a variant’s depth influence its likelihood of 
adoption?



● Conclusion: deeper variants are more often adopted by 

newcomers and committed members.
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RQ2: Does a variant’s depth influence its likelihood of 
adoption?



● Social reception: likes and comments.
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RQ3: Does a variant’s depth influence the post’s social 
reception?



● Regression results

○ Control for hashtags used, presence of any variant, and fixed-effect for each 

member.
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RQ3: Does a variant’s depth influence the post’s social 
reception?
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RQ3: Does a variant’s depth influence the post’s social 
reception?

COMMENTS LIKES

*** = p < 0.001, 

otherwise p > 0.05

Edit distance: -3.72E-3 Edit distance: 0.0130***



● Conclusion: greater orthographic depth implies more likes.
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RQ3: Does a variant’s depth influence the post’s social 
reception?



● Why do newcomers use more variants and deeper variation?

○ (1) Newcomers are over-compensating for perceived orthographic 

conventions.

○ (2) “Newcomers” are banned accounts whose behavior is worsening after 

returning from ban (Cheng, Danescu-Niculescu-Mizil, Leskovec 2014).

○ (3) Newcomers are generating new variants to distinguish from current 

community members (“flag-planting”).

Implications
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● Why do newcomers use more variants and deeper variation?

○ (1) Newcomers are over-compensating for perceived orthographic 

conventions.

○ (2) “Newcomers” are banned accounts whose behavior is worsening after 

returning from ban (Cheng, Danescu-Niculescu-Mizil, Leskovec 2014).

○ (3) Newcomers are generating new variants to distinguish from current 

community members (“flag-planting”).

● Deeper variants → stronger effects.

○ Effect is incremental, not just binary.

○ Orthographic variation reveals hidden community dynamics.

Implications
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Questions?

istewart6@gatech.edu

@alethioguy
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Backup slides
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Pro-ED Instagram
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Pro-ED Instagram
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Pro-ED Instagram
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thighgap

(space between thighs)



Ban effect
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● ana

● anorexia

● anorexianervosa

● bonespo

● bulimia

● eatingdisorder

● mia

● proana

● proanorexia

All source hashtags
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● probulimia

● promia

● secretsociety123

● skinny

● thighgap

● thin

● thinspiration

● thinspo



Distribution of variants
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Edit 

distance

Top 3 variants Source 

hashtags

Variants % posts with at 

least one variant 

from group

1 anarexia, bulimic, eatingdisorders 17 253 41.1%

2 anarexyia, thinspooo, thynspoo 15 221 2.07%

3 secretsociety123, thinspoooo, thygap 15 108 9.60%

4 secret_society123, secretsociety_123, 

thinspooooo

10 50 10.4%



Distribution of variants
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Differentiating community members
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● Per post:

○ SINCE_START, TILL_END

● Per member:

○ DATE_RANGE



Variable distributions
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Regression: predictors
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RQ1 RQ2 RQ3

Regression Logistic Logistic Poisson

Predicted VARIANT DIST_1, DIST_4 COMMENTS, LIKES

Predictors SINCE_START,

TILL_END,

DATE_RANGE,

DATE

SINCE_START,

DATE_RANGE,

DATE

SINCE_START,

DATE_RANGE,

MAX_EDIT,

VARIANT,

MAX_POP,

fixed effect for member



● Regression results
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RQ1: Who adopts new orthographic variants?

β SE Effect size

SINCE_START -0.00456*** 2.97E-4 -0.348

TILL_END 0.00294*** 2.88E-4 0.654

DATE 0.00529*** 1.77E-4 0.746

β SE Effect size

DATE_RANGE 0.00294*** 2.89E-4 0.654

DATE 0.00541*** 1.77E-4 0.746

*** = p < 0.001
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RQ3: Does a variant’s depth influence the post’s social 
reception?

β SE

SINCE_START 5.27E-3* 1.57E-3

TAGS 0.110*** 2.57E-3

VARIANT -7.89E-3 3.44E-3

MAX_POP -2.33E-3 1.26E-3

MAX_EDIT -3.72E-3 5.51E-3

COMMENTS LIKES

*** = p < 0.001, 

* = p < 0.05, 

otherwise p > 0.05

β SE

SINCE_START -0.0319*** 9.03E-4

TAGS 0.224*** 1.47E-3

VARIANT -0.00149*** 1.98E-3

MAX_POP -3.89E-3*** 7.25E-4

MAX_EDIT 0.0130*** 3.16E-3


