Whose wife is it anyway? Bias in machine translation
of same-gender relationships
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Motivation

- Modern assessments of gender bias in NLP focus
on isolated gender stereotypes, e.g. sim(“woman”,
“nurse”) > sim(“man’, “nurse”) (Bolukbasi et al. 2016).

- Many stereotypes are encoded in relationships!
E.g. does a language model predict that “the man’
will have “a boyfriend” or “a girlfriend”?
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- Important for Machine Translation, from
languages with rich morphological gender (Sp. el
esposo) to limited gender (Eng. his husband).

DETECT LANGUAGE ENGLISH SPANISH FRENCH vV - SPANISH ENGLISH ARABIC

The lawyer kissed his husband. X El abogado beso a su marido.
DETECT LANGUAGE ENGLISH SPANISH FRENCH vV =" SPANISH ENGLISH ARABIC Vv
El abogado besd a su marido. X The lawyer kissed her husband.

- Based on surface behavior: English LM seems to
have strong different-gender (DG) bias, at the
cost of same-gender (SG) relationships.

Does Google Translate exhibit SG

bias across variety of contexts?
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Experiment design

- Goal: test whether SG relationships can be translated as
accurately as DG relationships (metric = % correct).
- Source domain: gender-NP languages w/

gender-ambiguous possessives (French, Italian, Spanish)
- High-resource, similar grammar, long-term cultural exposure to

SG relationships.
- Known gender bias in FR, ES (Zhao et al. 2020)

- Target domain: no-gender-NP language w/ gendered
possessives (English)
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(“The lawyer kissed his boyfriend.”)
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RNN-based Neural Machine Translation (Chen et al. 2018)
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- Potential sources of bias:
- Unbalanced training data
- Grammatical “freezing™?
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(cf. coreference resolution with gender-neutral pronouns; Cao and Daumé 2020)

- Potential harms in bias:
- Invalidate someone’s relationship
- Reinforce heteronormative standards

- Need to test representation of basic relationships in language models
- Romantic, family, power status (Prabhakaran et al. 2012), social roles

- Text-as-data extensions

- What s the correlation between SG % correct vs. representation of LGBTQ people in occupation?
- Can we retrain MT model to recognize SG relationships?
- Can we find a latent SG dimension in sentence representations, and use this to identify other

latent SG sentences?



